conformal vector fields on tangent bundle with a special lift finsler metric*

نویسندگان

e. peyghan

چکیده

on a finsler manifold, we define conformal vector fields and their complete lifts and prove that incertain conditions they are homothetic.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A structure by conformal transformations of Finsler functions on the projectivised tangent bundle of Finsler spaces with the Chern connection

It is shown that the projectivised tangent bundle of Finsler spaces with the Chern connection has a contact metric structure under a conformal transformation with certain condition of the Finsler function and moreover it is locally isometric to E × Sm−1(4) for m > 2 and flat for m = 2 if and only if the Cartan tensor vanishes, i.e., the Finsler space is a Riemannian manifold. M.S.C. 2000: 53C60...

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

On Infinitesimal Conformal Transformations of the Tangent Bundles with the Generalized Metric

Let  be an n-dimensional Riemannian manifold, and  be its tangent bundle with the lift metric. Then every infinitesimal fiber-preserving conformal transformation  induces an infinitesimal homothetic transformation on .  Furthermore,  the correspondence   gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations on  onto the Lie algebra of infinitesimal ...

متن کامل

Essentially Finite Vector Bundles on Varieties with Trivial Tangent Bundle

Let X be a smooth projective variety, defined over an algebraically closed field of positive characteristic, such that the tangent bundle TX is trivial. Let FX : X −→ X be the absolute Frobenius morphism of X. We prove that for any n ≥ 1, the n–fold composition Fn X is a torsor over X for a finite group–scheme that depends on n. For any vector bundle E −→ X, we show that the direct image (Fn X)...

متن کامل

Conformal change of special Finsler spaces

The present paper is a continuation of the foregoing paper [16]. The main aim is to establish an intrinsic investigation of the conformal change of the most important special Finsler spaces. Necessary and sufficient conditions for such special Finsler manifolds to be invariant under a conformal change are obtained. Moreover, the conformal change of Chern and Hashiguchi connections, as well as t...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
iranian journal of science and technology (sciences)

ISSN 1028-6276

دوره 32

شماره 1 2008

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023