conformal vector fields on tangent bundle with a special lift finsler metric*
نویسندگان
چکیده
on a finsler manifold, we define conformal vector fields and their complete lifts and prove that incertain conditions they are homothetic.
منابع مشابه
A structure by conformal transformations of Finsler functions on the projectivised tangent bundle of Finsler spaces with the Chern connection
It is shown that the projectivised tangent bundle of Finsler spaces with the Chern connection has a contact metric structure under a conformal transformation with certain condition of the Finsler function and moreover it is locally isometric to E × Sm−1(4) for m > 2 and flat for m = 2 if and only if the Cartan tensor vanishes, i.e., the Finsler space is a Riemannian manifold. M.S.C. 2000: 53C60...
متن کاملConcurrent vector fields on Finsler spaces
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملOn Infinitesimal Conformal Transformations of the Tangent Bundles with the Generalized Metric
Let be an n-dimensional Riemannian manifold, and be its tangent bundle with the lift metric. Then every infinitesimal fiber-preserving conformal transformation induces an infinitesimal homothetic transformation on . Furthermore, the correspondence gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations on onto the Lie algebra of infinitesimal ...
متن کاملEssentially Finite Vector Bundles on Varieties with Trivial Tangent Bundle
Let X be a smooth projective variety, defined over an algebraically closed field of positive characteristic, such that the tangent bundle TX is trivial. Let FX : X −→ X be the absolute Frobenius morphism of X. We prove that for any n ≥ 1, the n–fold composition Fn X is a torsor over X for a finite group–scheme that depends on n. For any vector bundle E −→ X, we show that the direct image (Fn X)...
متن کاملConformal change of special Finsler spaces
The present paper is a continuation of the foregoing paper [16]. The main aim is to establish an intrinsic investigation of the conformal change of the most important special Finsler spaces. Necessary and sufficient conditions for such special Finsler manifolds to be invariant under a conformal change are obtained. Moreover, the conformal change of Chern and Hashiguchi connections, as well as t...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
iranian journal of science and technology (sciences)ISSN 1028-6276
دوره 32
شماره 1 2008
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023